DataFrame常用功能及技巧¶
1.*滑动窗口-rolling*
2.*浮点数保留3位小数*
1、滑动窗口-rolling¶
官方文档: Window 接口
pandas.api.typing.Rolling instances are returned by .rolling calls:
pandas.DataFrame.rolling()
pandas.Series.rolling().
pandas.api.typing.Expanding instances are returned by .expanding calls: pandas.DataFrame.expanding()
andas.Series.expanding().
pandas.api.typing.ExponentialMovingWindow instances are returned by .ewm calls: pandas.DataFrame.ewm()
pandas.Series.ewm().
以下是主要的函数及说明 - Rolling window functions
Rolling.count([numeric_only]) Calculate the rolling count of non NaN observations.
Rolling.sum([numeric_only, engine, ...]) Calculate the rolling sum.
Rolling.mean([numeric_only, engine, ...]) Calculate the rolling mean.
Rolling.median([numeric_only, engine, ...]) Calculate the rolling median.
Rolling.var([ddof, numeric_only, engine, ...]) Calculate the rolling variance.
Rolling.std([ddof, numeric_only, engine, ...]) Calculate the rolling standard deviation.
Rolling.min([numeric_only, engine, ...]) Calculate the rolling minimum.
Rolling.max([numeric_only, engine, ...]) Calculate the rolling maximum.
Rolling.corr([other, pairwise, ddof, ...]) Calculate the rolling correlation.
Rolling.cov([other, pairwise, ddof, ...]) Calculate the rolling sample covariance.
Rolling.skew([numeric_only]) Calculate the rolling unbiased skewness.
Rolling.kurt([numeric_only]) Calculate the rolling Fisher's definition of kurtosis without bias.
Rolling.apply(func[, raw, engine, ...]) Calculate the rolling custom aggregation function.
Rolling.aggregate(func, \*args, \*\*kwargs) Aggregate using one or more operations over the specified axis.
Rolling.quantile(q[, interpolation, ...]) Calculate the rolling quantile.
Rolling.sem([ddof, numeric_only]) Calculate the rolling standard error of mean.
Rolling.rank([method, ascending, pct, ...]) Calculate the rolling rank.
Weighted window functions
Window.mean([numeric_only]) Calculate the rolling weighted window mean.
Window.sum([numeric_only]) Calculate the rolling weighted window sum.
Window.var([ddof, numeric_only]) Calculate the rolling weighted window variance.
Window.std([ddof, numeric_only]) Calculate the rolling weighted window standard deviation.
2、浮点数保留3位小数¶
1)某一列的浮点数保留3位小数
# 保留3位小数
df['A'] = df['A'].round(3)
2)保存csv文件时,浮点数保留3位小数
dfData.to_csv('outfile.csv', index=False, encoding='gbk',float_format='%.3f')
3)使用 set_option() 方法设置小数点精度
dfData = pd.DataFrame()
print"DataFrame ...\n",dataFrame
# 设置 pd 使用小数精度
pd.set_option('display.precision', 2)
print"\n更新后带有小数点的DataFrame...\n", dataFrame